©1986 Pergamon Press Ltd.

CHIRAL SYNTHESIS OF 3,4-DISUBSTITUTED 2-AZETIDINONES **mot4** (R,R)-(+)-TARTARIC ACID

Alice Gateau-Olesker, Jeannine Cléophax and Stephan D. Géro

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette, France.

Summary: A novel route is described for the enantioselective synthesis of 2-azetidinones $\underline{24}$ and $\underline{25}$ from (R,R)-(+)-tartaric acid. Monomethylation, monobenzylation of 2 and the use of site specific pig liver esterase (PLE) to produce 6 and 7 are the key steps in the sequence.

Since 1970 there has been renewed interest in the development of efficient routes for the preparation of bicyclic and monocyclic β -lactams, as they constitute the most important class of antibacterial agents known at the present time.¹⁻⁴

It is now widely accepted that a suitably activated monocyclic β -lactam ring might be the minimum structural entity required for biological activity. We therefore focused our efforts on the construction of 2-azetidinones with nonclassical substitution at positions 3 and 4, using the readily accessible and cheap natural $(R,R)-(+)$ -tartaric acid 1, and we now wish to report the synthesis of 2-azetidinones $\frac{24}{1}$ and $\frac{25}{1}$. The synthetic strategy described here is based on the presence of a \texttt{C}_2 axis of symmetry in $(R, R) - (t)$ -tartaric acid. The symmetry of this system - which has equivalent hydroxyls - should allow (1) convenient preparation of monosubstituted benzyl and methyl ethers 3 , 4 ; (2) chemoselective cleavage of the diesters 3 , 4 to the required **p**-hydroxy-half esters <u>b, /</u>; and (3) N-C, ring closure of the <u>0</u>-benzylhydroxa 4 mates <u>12</u>, <u>13</u> (derived from β -hydroxy acids <u>6</u>, <u>7</u>) to the 2-azetidinones <u>20</u> and <u>21</u>.

We investigated first the possibility of using reductive opening of the 0-benzylidene tartrate 5 . Treatment of 5 with sodium cyanoborohydride in acetonitrile in the

41

in the presence of hydrogen chloride in diethyl ether at room temperature during 1 hr proceeded efficiently and afforded monobenzyl ether 3 in 85% yield. $l |a|_D^2 + 73^\circ$, $(c = 1.35, CHC1₂)$.

Selective monomethylation of diethyl tartrate was based on the regioselective enhancement of the nucleophilicity of hydroxyl groups in 2 by complexation with tin (II) chloride prior to methylation with diazomethane. Thus reaction of diethyl tartrate in acetonitrile with diazomethane in diethyl ether solution provided the syrupy monomethyl ether 4 in 75% yield. $\left[\left[\alpha \right]_0^{25} + 37^\circ$, (c = 1.09, CHCl₃)}.

We examined next the monosaponification of 3 and 4, the second crucial step in our synthetic strategy. Treatment of the mono-ethers $3₁$ 4 with 2.5 equivalents of potassium carbonate in dioxane-water (1:l) solution resulted in the formation of the required β -hydroxy-half esters 6, 7. In addition, some undesired monoesters 8, 9 and also dicarboxylic acids $\underline{10}$, $\underline{11}$ were produced. The crude products derived from the chemoselective base hydrolysis of the monoethers 6, 7 were treated with 0-benzylhydroxylamine hydrochloride and I-ethyl-3-(dimethylamino)propylcarbodiimide hydrochloride in water-tetrahydrofuran at pH 4.5 at room temperature for 1 hr. Careful chromatography gave fractions containing the monohydroxamates $\frac{12}{13}$ (55-65%), and dihydroxamates 16 17 (6-10%) as determined by 'H N.M.R. Repeated chromatography on silica gel, did not separate the monohydroxamate half-esters 12, 13 from the undesired positional isomers <u>14</u>, <u>15</u>. Due to the lack of selectivity experienced in the chemical hydrolysis of 3 and 4, a chemo-enzymatic approach was considered.

We were curious to know whether or not a cofactor independent hydrolase such as pig liver esterase ${\rm (PLE)}^{\textbf{5,6}}$ could be exploited for the preparation of β-hydroxy half esters 6 and 7 .

When the diethyl esters 3 and 4 in 0.1 M phosphate buffer (pH 8.0), were incubated with pig liver esterase (Sigma), half-esters 6 and 7 were exclusively formed, which were transformed to the **ß-hydroxy hydroxamates 12 and 13 required** for **ß**-lactam formation.

It has been firmly established that β -hydroxy-hydroxamates can be efficiently transformed into monocyclic β -lactams either by the Miller methodology⁷⁻⁹ using diethyl azodicarboxylate-triphenylphosphine (DEAD/TPP) or by mesylation followed by cyclization $(MsCl-pyridine/K_2CO_3$ -acetone).

Cyclization of the hydroxamates 12 , 13 to the β -lactams was effected either by the DEAD/TPP reagent or by mesylation followed by treatment with potassium carbonate in acetone. The 2-azetidinones 20, 21 were thus obtained in yields of 20-35%. These and other cyclization procedures tried were inefficient.

Tosylation in pyridine of the monohydroxamates 12 and 13 furnished the sulphonate esters <u>18</u> {80%, m.p. 83-84°C, $[\alpha]_D^2$ + 20°, (c = 0.87 CHC1₃)} and <u>19</u> {80%, m.p. $101-102^{\circ}$ C, $\left[\alpha\right]_{D}^{2\degree}$ + 12°, (c = 1.03, CHCl₃)). Treatment of tosylates <u>18</u> and <u>19</u> with K_2CO_2 -acetone provided the 2-azetidinones 20 and 21 in almost quantitative yields, $\{\begin{bmatrix} 25 & 40^{\circ}, (c = 0.63; & CHCL_{3}) & and & [\alpha]\frac{25}{n} + 37^{\circ}, (c = 1.6, CHCL_{3}) & respectively.\end{bmatrix}\}$

Selective catalytic hydrogenation of 20 and 21 led to the N-hydroxy β -lactams 22, 23 and TiCl₃ mediated reduction of the N-0 bonds in 22, 23 provided the target

3,4-disubstituted chiral 2-azetidinones $\underline{24}$, $\underline{25}$ $\{[\alpha]_D^{22} + 30^\circ$, (c = 1.1, CHCl₃), $\lbrack \alpha]_n^{2}$ + 15°, (c = 1.3, CHC1₃) respectively}.

The extension of these findings by systematic chemical modifications of the systems described¹⁰ here should allow the synthesis of methoxylated and non-methoxylated monocyclic and bicyclic enantiomerically pure @-lactams. Studies along these lines are in progress.

Acknowledgement. Financial support of this work by PIRMED (Director H.-P. Husson) and ROUSSEL-UCLAF Company (France) is gratefully acknowledged.

References

- l. R.B. Morin and M. Gorman, "Chemistry and Biology of $\beta-$ Lactam Antibiotics", Academic Press, New-York, 1982, Vol. 1, 2 and references therein.
- 2. R.B. Sykes, W.L. Parker and J.S. Wells, "Trends in Antibiotic Research, Genetics, Biosynthesis, Actions and New-Substances", Ed. H. Umezawa, A.L. Demain, J. Hata and C.R. Hutchinson, Japan Antibiotics Research Association, Tokyo, 1982, p. 115, and references therein.
- 3. G.A. Koppel, "Heterocyclic Compounds, Small Ring Heterocycles", Interscience, New York, 1983, Vol. 42, Part. 2, p. 219 and refrences therein.
- 4. R. Labia and C. Morin, <u>J. Antibiotics</u>, 1984, <u>3</u>7, 1103.
- 5. Ching-Shih Chen, Y. Fujimoto and Ch.J. Sih, J.Am.Chem.Soc., 1981, 103, 3580.
- 6. G. Sabbioni, M.L. Shea and J. Bryan Jones, J.C.S.,Chem.Comm., 1984, 236.
- 7. P.G. Mattingly, J.F. Kervin Jr., and M.J. Miller, <u>J.Am.Chem.Soc</u>., 1979, <u>101</u>, 3983.
- 8. M.J. Miller, J.S. Bajwa, P.G. Mattingly and K. Petersen, <u>J.Org.Chem.</u>, 1982, <u>4</u>7, 4928.
- 9. Chi-Nung Hsiao, S.P. Ashburn and M.J. Miller, <u>Tetrahedron Letters</u>, 1985, <u>26</u>, 4855.
- 10. The same sequence of reactions was repeated starting from (R,R)-dimethyl tartrate. For all new compounds the spectral data $\,$ (IR, $\,^{1}_{\rm H}$, $^{13}_{\rm C}$ and Mass) were in agreement with the assigned structure. Satisfactory microanalyses were obtained for key products.

(Received in France 2 November 1985)